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In this paper a moment method for radiative transfer equations is considered which
has been developed and investigated using different approaches. Problems appearing
for this moment system for boundary value problems using Maxwell-type bound-
ary conditions are described. A new method based on the consideration of positive
and negative half fluxes is developed and shown to overcome the above problems.
Moreover, a numerical scheme and numerical results for the new moment system are
presented. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Radiative transfer equations are used in many applications, for example to describe the
cooling of molten glass or heat transfer in gas turbines. For most of these applications ex-
tensive computation time is needed to solve the equations. Therefore, approximate methods
have been developed. Approximate equations can be derived from the full transport equa-
tions by asymptotic analysis or simply by taking suitable moments and closure relations.
Examples are diffusion or Rosseland equations, the PN equations, and moment equations
closed by the entropy minimization principle [2, 6, 8–10, 12]. The latter have turned out to
describe certain physical situations, i.e., solutions of the full transport equation, much better
than diffusion-type equations (see [6, 12]). For restrictions see [4, 8]. In the following we
give an example where these equations give nonphysical results and suggest a new set of
moment equations without these difficulties.

We consider the equations for radiative heat transfer in a simplified setting. It should
be stressed that the present simplification is not essential for the method. Other physical
situations can be considered and are discussed at the end of the paper.

1 This work was supported by the German research foundation DFG (SFB 568).
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More exactly we consider equations for the radiative intensity I (x, �, �, t), where space,
angular direction, and frequencies are denoted x ∈ [0, 1], � ∈ [−1, 1], � ∈ [0, ∞),

�∂t I + �∂x I = 1

ε
(B(I ) − I ), (1)

where

B(I ) = 15

�4

�3

exp(c�) − 1
, with c = 〈I 〉−1/4,

with the definition

〈·〉 = 1

2

+∞∫
0

+1∫
−1

· d� d�.

We note that

+∞∫
0

�3

exp(c�) − 1
d� = �4

15c4

and therefore

〈B(I )〉 = 〈I 〉.

Boundary conditions are, for example, given by prescribing the ingoing fluxes at x = 0 and
x = 1:

Ib|x=0,�>0, Ib|x=1,�<0.

The simple choice of the boundary conditions is not important for the approach presented
in the following. More-complicated wall models like reflecting boundary conditions can be
treated as well.

Moment systems have been obtained for these equations by multiplying the equations,
for example, with m(�) = (1, �), i.e.,

〈[
�∂t I + �∂x I − 1

ε
(B(I ) − I )

]
m(�)

〉
= 0, (2)

and closing the equations with an entropy minimization principle, [2, 6, 9, 10]. The mini-
mization principle yields the distribution function

B = 15

�4

�3

exp(��(1 + ��)) − 1
, (3)

with
∫ ∞

0
B d� = 1

(�(1 + ��))4
,
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and the parameters � and � are determined by fixing the first two moments

E = 〈1I 〉,
F = 〈�I 〉.

This gives B = B(E, F). Using this distribution function to close the moment equations
gives the closure

〈�2 I 〉 ∼ P = 〈�2B〉 = � E,

with the Eddington factor

� = � ( f ), f = F

E
, f ∈ [−1, 1],

and

� = 3 + 4 f 2

5 + 2
√

4 − 3 f 2
∈

[
1

3
, 1

]
.

The moment system (2) reads finally

�∂t E + ∂x F = 0,
(4)

�∂t F + ∂x � E = −1

�
F.

We note that the above closure has to be considered carefully, Restrictions of this equilibrium
closure are mentioned, for example, in [4, 8].

It can be shown that the absolute value of the relative flux f is always bounded by 1.
The eigenvalues of the system are easily evaluated and found to have absolute values also
bounded by 1. One finds two negative eigenvalues for f below some critical value − fC ,
where fC is equal to 2

√
3

5 . Moreover, one obtains one negative and one positive eigenvalue
for f ∈ [− fC , fC ] and two positive eigenvalues for f above fC (see, for example, [6]).

We use the Maxwell procedure, i.e., equalizing ingoing half range fluxes at the boundary,
to find boundary conditions for our moment system. For x = 0 they are∫ ∞

0

∫
�>0

�Ibm(�) d� d� =
∫ ∞

0

∫
�>0

�Bm(�) d� d�, (5)

with m = ( 1
� ). One proceeds analogously for x = 1 with � < 0. Depending on the number

of ingoing characteristics for system (4) zero, one or two conditions are prescribed on each
side.

We consider an example with equilibrium boundary conditions

Ib = 15

�4

�3

exp
(
�	−1/4

) − 1
, (6)

with

+∞∫
0

Ib d� = 	.
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For the following discussion we consider at x = 0 the above boundary data with 	 = 	l = 0.
For x = 1 we choose 	 = 	r = 1. The numerical results show for the full transport solution
that the relative flux f = 〈�I 〉

〈I 〉 for this problem is always in the subcritical range [− fC , fC ]
(see Section 3). In this case one boundary condition has to be imposed for the moment
system on the left side of the computational domain. Using the first Marshak condition we
get for x = 0 (where 	 was equal to 0)∫ ∞

0

∫
�>0

�B d� d� = 0.

Looking at the exact form of the distribution function B (compare [6]), one observes that
this can only be true for f = −1. In this case B is singular at � = −1. Obviously, this
contradicts the assumption that the relative flux is in [− fC , fC ]. The moment system with
these conditions is obviously inconsistent with the solution of the full transport equation.

The difficulty discussed here can be partially avoided by using an approach similiar to
kinetic schemes (see, e.g., [11]). The kinetic boundary conditions can be included in the
numerical solution of a full space moment model in different ways. One can either restrict
the kinetic approach to the boundary and use a upwind scheme based on Roe solvers,
etc., or use a kinetic scheme in the whole computational domain (see [1, 7, 13] for such
approaches). We will show that the new approach presented in the following includes the
boundary condition in a natural way in the model and, moreover, is more accurate than the
approach described above.

We note that considering the transport or the moment equations as � tends to 0, one obtains
the diffusion approximation. The Maxwell procedure gives in this case the so-called slip
boundary conditions. These conditions yield well-known reasonable approximations of the
full transport solution. They are used for comparison in the numerical examples below.
More exactly one obtains the limit equations

∂t E − ∂2
x

1

3
E = 0. (7)

The distribution function to be used in the Maxwell procedure (5) is a polynomial expansion,
given by expanding the full transport solution or the function B (noting that f , F are of
order �):

Bexpanded = E − ��∂x E + · · · . (8)

We note that in this simple case the diffusion equation with slip boundary conditions is
equivalent to the P1 approximation with Maxwell boundary conditions.

2. A NEW MOMENT SYSTEM BASED ON HALF FLUXES

To be able to include correctly the kinetic boundary conditions in the moment model we
use half fluxes instead of full space moments as the basic quantities of our moment system
(see, for example, [3] and references therein for a similiar approach in gas dynamics). We
use the moments m = (1+, 1−, �+, �−), where

1− = 1|�<0, 1+ = 1|�>0,

�+ = 1+�, �− = 1−�.
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Using the entropy minimization principle, fixing the half space moments, the distribution
function, instead of (3), is now given by

B = 15

�4

�3

exp(�(�−(1− + �−�−) + �+(1+ + �+�+)) − 1)
.

Note that

+∞∫
0

B d� = 1

(�−(1− + �−�−) + �+(1 + �+�+))4
,

where the parameters

�− < 1, �+ > −1, �− > 0, �+ > 0

are given by fixing the half space moments

E− = 〈1− I 〉,
E+ = 〈1+ I 〉,
F− = 〈�− I 〉,
F+ = 〈�+ I 〉.

We have B = B(E−, E+, F−, F+) and

E = 〈I 〉 = E+ + E−,

F = 〈�I 〉 = F+ + F−.

Using the above distribution function to close the moment equations gives the closure

〈I (�+)2〉 ∼ P+ = 〈B(�+)2〉 = �+E+,

〈I (�−)2〉 ∼ P− = 〈B(�−)2〉 = �−E−,

with

〈I �2〉 ∼ P = 〈�2B〉 = P+ + P−

and

�+ = �+( f+), f+ = F+
E+

∈ [0, 1],

�− = �−( f−), f− = F−
E−

∈ [−1, 0],

�+ = 8 f 2
+

1 +
√

1 + 12 f+ − 12 f 2+ + 6 f+
∈ [0, 1],

�− = 8 f 2
−

1 +
√

1 − 12 f− − 12 f 2− − 6 f−
∈ [0, 1].
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We consider the transport equation as before and integrate to obtain the balance equations

〈[
It + �Ix − 1

ε
(B(I ) − I )

]
m

〉
= 0,

with

m = (1−, �−, 1+, �+).

Note that 〈B(I )〉 = E+ + E− = 〈I 〉. The system reads finally

�∂t E− + ∂x F− = 1

ε

[
E+ + E−

2
− E−

]
,

�∂t F− + ∂x �−E− = 1

ε

[
− E+ + E−

4
− F−

]
,

(9)

�∂t E+ + ∂x F+ = 1

ε

[
E+ + E−

2
− E+

]
,

�∂t F+ + ∂x �+E+ = 1

ε

[
E+ + E−

4
− F+

]
.

The eigenvalues associated with the first two variables are always negative, and the other
two always positive. We use again the Maxwell procedure to find boundary conditions for
our moment system,

∫ ∞

0

∫
�>0

�Ibm(�) d� d� =
∫ ∞

0

∫
�>0

�Bm(�) d� d�,

with m = ( 1
� ). This gives at x = 0, where two boundary conditions are needed according

to two positive eigenvalues of the system,

F+ = 〈�+ Ib〉,
(10)

P+ = 〈(�+)2 Ib〉,

and at x = 1

F− = 〈�− Ib〉,
(11)

P− = 〈(�−)2 Ib〉.

In case of the above example with equilibrium boundary conditions we have at x = 0

F+ = 0, P+ = 0,

and at x = 1

F− = −1

4
, P− = 1

6
.
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Obviously the number of boundary conditions is fixed and does not depend on the special
physical situation, as in the case of the full moment method.

An asymptotic expansion E+ = E0
+ + �E1

+ + · · · , etc., for the continuous model

ε∂t E∓ + ∂x F∓ = 1

ε

[
E+ + E−

2
− E∓

]
,

ε∂t F∓ + ∂x P∓ = 1

ε

[
∓ E+ + E−

4
− F∓

]

gives to order 0

E0
∓ = E0

+ + E0
−

2
= E0

2
,

F0
∓ = ∓ E0

+ + E0
−

4
= ∓ E0

4
,

f 0
∓ = ∓1

2
,

and

P0
∓ = �∓( f 0

∓)E0
∓ = 1

3
E0

∓

or

P0 = 1

3
E0.

To order 1 it yields

∂x P0
∓ = ∓ E1

+ + E1
−

4
− F1

∓.

By summing these two equations we get

∂x P0 = −F1.

Order 2 yields

∂t E0
∓ + ∂x F1

∓ = 1

ε

[
E2

+ + E2
−

2
− E2

∓

]
.

By summing,

∂t E0 + ∂x F1 = 0

or

∂t E0 − ∂x

(
1

3
∂x E0

)
= 0.

That means we have obtained again the classical diffusion equation.
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3. A NUMERICAL METHOD AND NUMERICAL RESULTS

We discretize the equations using a simple and straightforward upwind scheme. The
discrete quantities at tn = n�t and xi = i�x we denote En

i , etc. Due to the sign of the
eigenvalues one obtains

En+1
−,i − En

−,i + �t

��x

(
Fn

−,i+1 − Fn
−,i

) = �t

ε2

[
En

+,i + En
−,i

2
− En

−,i

]
,

Fn+1
−,i − Fn

−,i + �t

��x

(
�−En

−,i+1 − �−En
−,i

) = �t

ε2

[
− En

+,i + En
−,i

4
− Fn

−,i

]
,

En+1
+,i − En

+,i + �t

��x

(
Fn

+,i − Fn
+,i−1

) = �t

ε2

[
En

+,i + En
−,i

2
− En

+,i

]
,

Fn+1
+,i − Fn

+,i + �t

��x

(
�+En

+,i − �+En
+,i−1

) = �t

ε2

[
En

+,i + En
−,i

4
− Fn

+,i

]
.

As boundary conditions, F+ and P+ = �+E+ are described on the left hand side of the
boundary and F− and P+ on the right hand side. An asymptotic expansion En

−,i = E0,n
−,i +

εE1,n
−,i + ε2 E2,n

−,i + · · · , etc., gives to order 0

E0,n
∓,i = E0,n

+,i + E0,n
−,i

2
= E0,n

i

2
,

F0,n
∓,i = ∓ E0,n

+,i + E0,n
−,i

4
= ∓ E0,n

i

4
.

Moreover,

f 0,n
∓,i = ∓1

2

and

P0,n
∓,i = 1

3

E0,n
i

2
.

To order 1 the equations are

∓ 1

�x

(
P0,n

∓,i − P0,n
∓,i±1

) = ∓ E1,n
+,i + E1,n

−,i

4
− F1,n

∓,i .

Since

E1,n
+,i + E1,n

−,i = 0,

we obtain

∓ 1

�x

(
P0,n

∓,i − P0,n
∓,i±1

) = ∓ 1

6�x

(
E0,n

i − E0,n
i±1

) = −F1,n
∓,i .
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Order 2 yields

1

�t

(
E0,n+1

i − E0,n
i

) + 1

�x

(
F1,n

−,i+1 − F1,n
−,i

) + 1

�x

(
F1,n

+,i − F1,n
+,i−1

) = 0

or

1

�t

(
E0,n+1

i − E0,n
i

) − 1

6�x2

((
E0,n

i+2 − E0,n
i+1

) − (
E0,n

i+1 − E0,n
i

))

− 1

6�x2

((
E0,n

i − E0,n
i+1

) − (
E0,n

i−1 − E0,n
i−2

)) = 0,

which is equivalent to

1

�t

(
E0,n+1

i − E0,n
i

) − 1

3

[
1

2

(
1

�x2

(
E0,n

i+2 − 2E0,n
i+1 + E0,n

i

)

+ 1

�x2

(
E0,n

i − 2E0,n
i−1 + E0,n

i−2

))]
= 0.

This is up to O(�x2) an approximation of the time discretized diffusion equation.
In the first four figures we show the solutions of the different models for a stationary

situation using the example described in the text with equilibrium boundary conditions (6)
and 	 = 	r at x = 1 and 	 = 	l at x = 0, respectively. In the first four plots we show only
the sensitive boundary region x ∈ [0, 0.1] and not the full domain of computation.

Figure 1 shows the comparison of the densities for the case 	l = 0, 	r = 0, and � = 0.1.
Figure 2 shows the comparison of the relative fluxes f . The half space moment expansion
(9) with boundary conditions (10, 11) is compared with the diffusion solution with slip
boundary conditions derived from the Maxwell procedure with the distribution function (8)
and the full transport solution. Moreover, the solution of the full moment model is plotted.
According to the discussion in the introduction, the boundary conditions are inconsistent
with these equations. To circumvent this problem we use a kinetic scheme that includes the
kinetic boundary conditions directly in the numerical method. See [1, 7, 13] for similiar
approaches and the discussion above.

Figures 3 and 4 show the comparison of the relative fluxes for 	l = 0.02 and again
	r = 1.0. We include for comparison the solution of the full space moment method. In these
cases the first Marshak condition can be used as boundary condition for the full moment
equation. Since the relative flux is in this case in the subcritical domain, this fits to the
required number of boundary conditions for the full moment system. The results for the
full moment model obtained with a standard method are in these cases the same as those
obtained with the above-mentioned kinetic scheme.

Figure 5 shows the results of an extension of the above equations to the case with
absorption. We consider an example with two beams. Equation (1) is considered in the form

�∂t I + �∂x I = 1

ε
(B(I ) − I ) − 
a� I. (12)

The boundary conditions are 	l =	r = 1, � = 0.02, and 
a�2 = 1. The corresponding ap-
proximate equations are easily deduced. For further comparison of the results we refer
to [1].
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FIG. 1. Density E , � = 0.1, 	l = 0, 	r = 1.
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FIG. 2. Relative flux f , � = 0.1, 	l = 0, 	r = 1.
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FIG. 3. Relative flux f , � = 0.1, 	l = 0.02, 	r = 1.
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FIG. 4. Relative flux f , � = 1, 	l = 0.02, 	r = 1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−4
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100

transport 
p1        
halfmoment
fullmoment

FIG. 5. Density E , � = 0.02, 	l =	r = 1, and 
a�2 = 1.

One observes that the density and the flux are in all cases considered here much better
approximated by the half space moment method than by the diffusion equation with slip
boundary coefficients or by the full space moment method. This is true not only for boundary
regions, but also for problems like the two-beam problem discussed in the last experiment.
In this case interior numerical shocks created by the full moment method are observed
(see [1]).

4. SUMMARY

• A half space moment method based on entropy minimization is developed for a one-
dimensional simplified model.

• The results show that the solution fits in the cases considered here nearly perfectly
well with the solution of the full radiative transfer equation.

• Connections and differences to kinetic schemes including kinetic boundary conditions
in the numerical solution of the full space moment model are discussed.

• The extension to cases with absorption is straightforward and has been treated in the
paper.

5. EXTENSIONS

• The above model is easily used in combination with a heat transfer equation and
general radiative mean absortion coefficients [5]. For example, one may consider the
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equations

�2∂t T = �2k∂2
x T + 〈I 〉 − 〈B(T )〉,

�2∂t I + ��∂x I = B(T ) − I,

with

B(T ) = 15

�4

�3

exp(c�) − 1
with c = T −1/4.

• More-complicated wall models like reflection boundary conditions can be included
into the model numerically.

• Frequency dependence of the coefficients, for example piecewise constant absorption
coefficients, can be taken into account by considering the relevant frequency bands sepa-
rately. However, the model has to be closed numerically in this case. For an example for a
full moment closure including frequency bands, we refer the reader to [14].

• Extensions to multidimensional cases are based on directional splitting. The extension
to several dimensions will be investigated in a following paper.
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